Search results

1 – 10 of 57
Article
Publication date: 1 October 2018

Zhiwei Li

The purpose of this paper is to find an effective route to fabricate high transparent top electrode in quantum dots light-emitting diodes (QLEDs).

Abstract

Purpose

The purpose of this paper is to find an effective route to fabricate high transparent top electrode in quantum dots light-emitting diodes (QLEDs).

Design/methodology/approach

Al-doped ZnO (AZO) top cathode with high transparency have been deposited by an atomic layer deposition (ALD) method at 140°C for 1 h. The products are studied by UV-vis spectrometer and atomic force microscopy (AFM). The electroluminescence spectra of QLED are recorded using an Ocean Optics high-resolution spectrometer (HR4000). The devices were measured under ambient conditions without encapsulation.

Findings

The AZO-based QLED shows excellent performance with high luminance and current efficiency.

Originality/value

The AZO obtained by ALD method is a promising cathode candidate for application in QLEDs.

Details

Microelectronics International, vol. 35 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 3 May 2016

Zhiwei Li

The purpose of this paper is to seek a surfactant or template-free, simple and green method to fabricate NiO nanobelts and to find an effective technique to detect the ethanol…

Abstract

Purpose

The purpose of this paper is to seek a surfactant or template-free, simple and green method to fabricate NiO nanobelts and to find an effective technique to detect the ethanol vapor at room temperature.

Design/methodology/approach

NiO nanobelts with high aspect ratio and dispersive distribution have been synthesized by a template-free hydrothermal reaction at 160°C for 12 h. The products are studied by X-ray diffraction (XRD), energy dispersive spectroscopY, scanning electron microscopy, atomic force microscopy, high-resolution transmission electron microscopy, selective area electron diffractio and X-ray photoelectron spectroscopy. In particular, the room-temperature ethanol sensitivity of NiO nanobelts is investigated by the surface photo voltage (SPV) technique.

Findings

The prepared NiO nanobelts is single crystalline bunsenite structure with the length of approximately 10 μm and the diameter of approximately 30 nm. The atomic ratio of “Ni” to “O” is 0.92:1. When the concentration of ethanol vapor reaches 100 ppm, the sensitivity of NiO nanobelts is 7, which can meet the commercial demanding of ethanol gas sensor.

Originality/value

The NiO nanobelts can be obtained by a template-free, simple and green hydrothermal reaction at 160°C for 12 h. The NiO nanobelts-based gas sensor is a promising candidate for the application in ethanol monitoring at room temperature by SPV technique.

Details

Microelectronics International, vol. 33 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 25 September 2023

Jiaxin Li, Zhiyuan Zhu, Zhiwei Li, Yonggang Zhao, Yun Lei, Xuping Su, Changjun Wu and Haoping Peng

Gallic acid is a substance that is widely found in nature. Initially, it was only used as a corrosion inhibitor to retard the rate of corrosion of metals. In recent years, with…

Abstract

Purpose

Gallic acid is a substance that is widely found in nature. Initially, it was only used as a corrosion inhibitor to retard the rate of corrosion of metals. In recent years, with intensive research by scholars, the modification of coatings containing gallic acid has become a hot topic in the field of metal protection. This study aims to summarize the various preparation methods of gallic acid and its research progress in corrosion inhibitors and coatings, as well as related studies using quantum chemical methods to assess the predicted corrosion inhibition effects and to systematically describe the prospects and current status of gallic acid applications in the field of metal corrosion inhibition and protection.

Design/methodology/approach

First, the various methods of preparation of gallic acid in industry are understood. Second, the corrosion inhibition principles and research progress of gallic acid as a metal corrosion inhibitor are presented. Then, the corrosion inhibition principles and research progress of gallic acid involved in the synthesis and modification of various rust conversion coatings, nano-coatings and organic resin coatings are described. After that, studies related to the evaluation and prediction of gallic acid corrosion inhibition on metals by quantum chemical methods are presented. Finally, new research ideas on gallic acid in the field of corrosion inhibition and protection of metals are summarized.

Findings

Gallic acid can be used as a corrosion inhibitor or coating in metal protection.

Research limitations/implications

There is a lack of research on the synergistic improvement of gallic acid and other substances.

Practical implications

The specific application of gallic acid in the field of metal protection was summarized, and the future research focus was put forward.

Originality/value

To the best of the authors’ knowledge, this paper systematically expounds on the research progress of gallic acid in the field of metal protection for the first time and provides new ideas and directions for future research.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 July 2018

Shaoling Fu, Zhiwei Li, Bill Wang, Zhaojun Han and Baofeng Huo

The purpose of this paper is to explore the relationships between relationship commitment, cooperative behavior and alliance performance in agricultural supply chains. By…

Abstract

Purpose

The purpose of this paper is to explore the relationships between relationship commitment, cooperative behavior and alliance performance in agricultural supply chains. By investigating dyadic relationships between companies and their contract farmers (hereafter denoted by C+F), this study aims to investigate how relationship commitment influences cooperative behavior and how such behavior further influences alliance performance in C+F agricultural supply chains in China.

Design/methodology/approach

Based on data collected from 202 companies and 462 farmers in China, this study uses the structural equation modeling approach to test the conceptual model and related hypotheses.

Findings

For both companies and contract farmers, normative relationship commitment is a necessity for economically and socially cooperative behavior (i.e. specific investment and communication, respectively), while instrumental relationship commitment has no relationship with specific investment. Only socially cooperative behavior (communication) can improve alliance performance, while economically cooperative behavior (specific investment) has no relationship with alliance performance. For companies, instrumental relationship commitment reduces communication, but specific investment increases communication. For farmers, both instrumental relationship commitment and specific investment have no relationship with communication.

Originality/value

This study contributes to the literature on supply chain management by adopting a bilateral perspective and examining relationships among relationship commitment, cooperative behavior and alliance performance in the C+F context. It provides agricultural companies and contract farmers with valuable guidance to use relationship commitment and cooperative behavior to improve alliance performance in agricultural supply chains in China.

Details

Industrial Management & Data Systems, vol. 118 no. 5
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 28 April 2014

Zhiwei Li, Wenxin Huai, Zhonghua Yang, Zhongdong Qian and Yuhong Zeng

A radial offset jet has the flow characteristics of a radial jet and an offset jet, which are encountered in many engineering applications. The purpose of this paper is to study…

169

Abstract

Purpose

A radial offset jet has the flow characteristics of a radial jet and an offset jet, which are encountered in many engineering applications. The purpose of this paper is to study the dynamics and mass transfer characteristics of the radial offset jet with an offset ratio 6, 8 and 12.

Design/methodology/approach

Three turbulence models, namely the SST k-? model, detached eddy simulation model, and improved delayed detached eddy simulation (IDDES), were applied to the radial offset jet with an offset ratio eight and their results were compared with experimental results. The contrasting results, such as the distributions of mean and turbulent velocity and pressure, show that the IDDES model was the best model in simulating the radial offset jet. The results of the IDDES were analyzed, including the Reynolds stress, turbulent kinetic energy, triple-velocity correlations, vertical structure and the tracer concentration distribution.

Findings

In the axisymmetric plane, Reynolds stresses increase to reach a maximum at the location where the jet central line starts to be bent rapidly, and then decrease with increasing distance in the radial direction. The shear layer vortices, which arise from the Kelvin-Helmholtz instability near the jet exit, become larger scale results in the entrainment and vortex pairing, and breakdown when the jet approaches the wall. Near the wall, the vortex swirling direction is different at both front and back of attachment point. In the wall-jet region, the concentration distributions present self-similarity while it keeps constant below the jet in the recirculation region.

Research limitations/implications

The radial offset jet with other offset ratio and exit angle is not considered in this paper and should be investigated.

Originality/value

The results obtained in this paper will provide guidance for studying similar flow and a better understanding of the radial offset jet.

Details

Engineering Computations, vol. 31 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 August 2018

Zumin Wu, Chenxing Sheng, Zhiwei Guo, Yifei Li, Reza Malekian and Zhixiong Li

Water-lubricated bearings can significantly reduce the pollution to environment because the traditional oil lubricant is replaced by water in the bearings. The ultrahigh molecular…

Abstract

Purpose

Water-lubricated bearings can significantly reduce the pollution to environment because the traditional oil lubricant is replaced by water in the bearings. The ultrahigh molecular weight polyethylene (UHMWPE) has proven to be effective and reliable for the manufacturing of water-lubricated bearings. However, limited work has been done to address the improvement of the tribological performance of the UHMWPE-based water-lubricated bearings using surface texture processing. This paper aims to investigate the effects of bar-grooved surface on the tribological performance improvement of UHMWPE-based water-lubricated bearings.

Design/methodology/approach

For the first time, the bar grooves were processed on the surfaces of UHMWPE-based water-lubricated bearings. The CBZ-1 friction and wear tester have been used to test the wear and friction performance of the bearing samples. The LI laser interference surface contour graph and the digital microscope have been used to measure the surface morphology of the specimens. The tribological characteristics of the tested bearings were analyzed.

Findings

With bar grooves added on the surfaces of the specimens, the friction coefficient of the specimens were lower than that of the specimens without surface texture processing; the wear quantity of the two kinds of specimens were almost the same; by using the LI laser interference surface contour graph and the digital microscope to measure the surface morphology of the specimens, the furrows of the specimens with bar grooves were narrower and shallower than that of the specimens without bar grooves.

Practical implications

The paper implicates that the surface texture processing using bar grooves can reduce the friction coefficient and prolong the service life of the water-lubricated bearings in practical applications.

Originality/value

This paper fulfills an identified need to provide important theoretical and experimental support to the design of water-lubricated bearings in practical applications.

Details

Industrial Lubrication and Tribology, vol. 70 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 August 2023

Qinggang Shi, Peng Li and Zhiwei Xu

The purpose of this paper is to propose a consensus method for multi-attribute group decision-making (MAGDM) problems based on preference-approval structure and regret theory…

Abstract

Purpose

The purpose of this paper is to propose a consensus method for multi-attribute group decision-making (MAGDM) problems based on preference-approval structure and regret theory, which can improve the efficiency of decision-making and promote the consensus level among individuals.

Design/methodology/approach

First, a new method to obtain the reference points based on regret theory and expert weighting method is proposed. Second, a consensus reaching method based on preference-approval structure is proposed. Then, an adjustment mechanism to further improve the consensus level between individuals is designed. Finally, an example of the assessment of elderly care institutions is used to illustrate the feasibility and effectiveness of the proposed method.

Findings

The feasibility and validity of the proposed method are verified by comparing with the advanced two-stage minimum adjustment method. The compared results show that the proposed method is more consistent with the actual situation.

Research limitations/implications

This paper presents a consensus reaching method for MAGDM based on preference-approval structure, which considers the avoidance behaviors of individuals and reference points. Decision makers (DMs) can use this approach to rank and categorize alternatives while further increasing the level of consensus among them. This can further help determine the optimal alternative more efficiently.

Originality/value

A new MAGDM problem based on the combination of regret theory and individual reference points is proposed. Besides, a new method of obtaining experts' weights and a consensus reaching method for MAGDM based on preference-approval structure are designed.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 8 September 2022

Yongjian Li, Kai Zhang, Yu Dou, Zhiwei Lin, Yu Fu and Changgeng Zhang

In rotational alternating current machines, interlocking is a commonly used manufacturing method to fix laminated silicon steel cores. The purpose of this study is to measure the…

Abstract

Purpose

In rotational alternating current machines, interlocking is a commonly used manufacturing method to fix laminated silicon steel cores. The purpose of this study is to measure the localized magnetic properties more comprehensively and to analyze the deteriorated magnetic properties caused by interlocking more accurately.

Design/methodology/approach

A movable B–H sensor is designed in this paper. The localized magnetic properties measurement was performed to investigate the magnetic properties around the interlocks with various sizes, various orientations and various numbers of laminations. Then, the damaged area caused by the interlocking was quantified, and the magnetic degradation of different degrees is layered.

Findings

The measurement results have shown that the interlocks with larger sizes, along the transverse direction and on 10-layer laminate, will lead to more serious magnetic degradation, and the maximum loss increment can reach up to 70%.

Originality/value

This work is an improvement and optimization based on the previous overall magnetic measurement of the interlock. The quantitative results of the localized magnetic measurement will have a certain significance for the accurate modeling and simulation of the electrical machines and provide valuable guidance for the optimization of the actual production process of the motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 May 2018

Jiawei Feng, Jianzhong Fu, Zhiwei Lin, Ce Shang and Bin Li

T-spline is the latest powerful modeling tool in the field of computer-aided design. It has all the merits of non-uniform rational B-spline (NURBS) whilst resolving some flaws in…

Abstract

Purpose

T-spline is the latest powerful modeling tool in the field of computer-aided design. It has all the merits of non-uniform rational B-spline (NURBS) whilst resolving some flaws in it. This work applies T-spline surfaces to additive manufacturing (AM). Most current AM products are based on Stereolithograph models. It is a kind of discrete polyhedron model with huge amounts of data and some inherent defects. T-spline offers a better choice for the design and manufacture of complex models.

Design/methodology/approach

In this paper, a direct slicing algorithm of T-spline surfaces for AM is proposed. Initially, a T-spline surface is designed in commercial software and saved as a T-spline mesh file. Then, a numerical method is used to directly calculate all the slicing points on the surface. To achieve higher manufacturing efficiency, an adaptive slicing algorithm is applied according to the geometrical properties of the T-spline surface.

Findings

Experimental results indicate that this algorithm is effective and reliable. The quality of AM can be enhanced at both the designing and slicing stages.

Originality/value

The T-spline and direct slicing algorithm discussed here will be a powerful supplement to current technologies in AM.

Details

Rapid Prototyping Journal, vol. 24 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 June 2023

Zhiwei Jiao, Zhongyu Zhuang, Li Hu, Ce Sun, Yuan Yu and Weimin Yang

The purpose of this study was to fabricate silicone products that had different hardnesses and moduli, thus partially addressing the limitations of homogeneous materials whose…

Abstract

Purpose

The purpose of this study was to fabricate silicone products that had different hardnesses and moduli, thus partially addressing the limitations of homogeneous materials whose deformation depends on altered structure or dimensions, and to provide new dimensions for the design of silicone soft structures.

Design/methodology/approach

A soft material three-dimensional printing platform with a dual-channel printing capability was designed and built. Using the material extrusion method, material screening was first performed using single-channel printing, followed by dual-channel-regulated printing experiments on products having different hardness and modulus values.

Findings

The proportion of additives has an effect on the accuracy of the printed product. Material screening revealed that Sylgard 527 and SE 1700 could be printed without additives. The hardness and mechanical properties of products are related to the percentage in their composition of hard and soft materials. The hardness of the products could be adjusted from 26A to 42A and the Young’s modulus from 0.875 to 2.378 Mpa.

Originality/value

Existing silicone products molded by casting or printing are mostly composed of a single material, whose uniform hardness and modulus cannot meet the demand for differentiated deformation in the structure. The existing multihardness silicone material printing method has the problems of long material mixing time and slow hardness switching and complicated multi-extrusion head switching. In this study, a simple, low-cost and responsive material extrusion-based hardness programmable preparation method for silicone materials is proposed.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 57